Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.7
106 reviewsSince scaling of CMOS is reaching the nanometer area serious limitations enforce the introduction of novel materials, device architectures and device concepts. Multi-gate devices employing high-k gate dielectrics are considered as promising solution overcoming these scaling limitations of conventional planar bulk CMOS. Variation Aware Analog and Mixed-Signal Circuit Design in Emerging Multi-Gate CMOS Technologies provides a technology oriented assessment of analog and mixed-signal circuits in emerging high-k and multi-gate CMOS technologies. Closing the gap from technology to design a detailed insight into circuit performance trade-offs related to multi-gate and high-k device specifics is provided. The new effect of transient threshold voltage variations is described with an equivalent model that allows a systematic assessment of the consequences on circuit level and the development of countermeasures to compensate for performance degradation in comparators and A/D converters. Key analog, mixed-signal and RF building blocks are realized in high-k multi-gate technology and benchmarked against planar bulk. Performance and area benefits, enabled by advantageous multi-gate device properties are analytically and experimentally quantified for reference circuits, operational amplifiers and D/A converters. This is based on first time silicon investigations of complex mixed-signal building blocks as D/A converter and PLL with multi-gate devices. As another first, the integration of tunnel transistors in a multi-gate process is described, enabling devices with promising scaling and analog properties. Based on these devices a novel reference circuit is proposed which features low power consumption.