Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
4.7
86 reviewsA complete overview of the topic of viscoplastic flow in solids produced by shear banding
This book presents novel ideas about inelastic deformation and failure of solids in a clear, concise manner. It exposes readers to information that will allow them to acquire the competence and ability to deal with up-to-date manufacturing and failure processes. It also portrays a new understanding of deformation processes. Finally, shear banding’s typical mechanism becomes the active cause of viscoplastic flow and not the passive effect.
Viscoplastic Flow in Solids Produced by Shear Bandingbegins by discussing the new physical model of multilevel hierarchy and the evolution of micro-shear bands. In conclusion, it examines the difficulties of applying a direct multiscale integration scheme and extends the representative volume element (RVE) concept using the general theory of the singular surfaces of the microscopic velocity field sweeping out the RVE. This book reveals a new formulation of the shear strain rate generated by the consecutive systems of shear bands in the workflow integration approach. This book:
Viscoplastic Flow in Solids Produced by Shear Bandingwill appeal to researchers studying physical foundations of inelastic behaviour and failure of solid materials, dealing with analysis and numerical simulations of manufacturing forming processes. It is also an excellent resource for graduate and postgraduate students of material science and mechanical engineering faculties.