logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Alternate Programmed Cell Death Signaling In Antiviral Host Defense Edward S Mocarski

  • SKU: BELL-54412506
Alternate Programmed Cell Death Signaling In Antiviral Host Defense Edward S Mocarski
$ 31.00 $ 45.00 (-31%)

4.3

58 reviews

Alternate Programmed Cell Death Signaling In Antiviral Host Defense Edward S Mocarski instant download after payment.

Publisher: Springer
File Extension: PDF
File size: 3.37 MB
Pages: 179
Author: Edward S. Mocarski, Pratyusha Mandal
ISBN: 9783031452772, 3031452771
Language: English
Year: 2023

Product desciption

Alternate Programmed Cell Death Signaling In Antiviral Host Defense Edward S Mocarski by Edward S. Mocarski, Pratyusha Mandal 9783031452772, 3031452771 instant download after payment.

This volume provides a comprehensive review of programmed cell death pathways and their fundamental role in antiviral host defense. The book deep-dives into the molecular functions and regulation of necroptosis and discusses how viruses induce and manipulate this potent innate cellular sensing system. Initially, understanding of necroptosis emerged from studies on tumor necrosis factor (TNF) signaling that showed the key role of receptor interacting protein kinase 1 (RIPK1) in the activation of receptor interacting protein kinase 3 (RIPK3) which then phosphorylates mixed lineage kinase domain like pseudokinase (MLKL) to execute cells via plasma membrane leakage of cytosolic contents. Since its discovery, multiple facets of the RIPK3-dependent necroptotic machinery have evolved where the requirements for execution of death varies depending on the stimulus. Virus-induced necroptosis was discovered over 10 years ago in studies on murine cytomegalovirus (MCMV) where a virus-encoded inhibitor was shown to prevent the recruitment of RIPK3 (RIP3). This transformative evidence identified a novel pathway acting independent of TNF, interferon or RIPK1 that can stop virus from infecting its natural mouse host by killing off infected cells to halt replication. Over the past decade influenza A virus (IAV), herpes simplex virus (HSV) and poxvirus vaccinia (VACV) have all been shown to trigger the pathway. Herpesviruses and poxviruses also encode inhibitors of caspase-8 whose elaboration unleashes the necroptosis pathway. IAV and other RNA viruses do not encode programmed cell death inhibitors. RIPK3 is also known to induce apoptosis by recruiting RIPK1 as shown nearly a decade ago and this dual apoptosis/necroptosis induction occurs naturally during influenza A virus infection. RIPK3 is also able to induce an inflammatory response independently of programmed cell death that can predominate to drive inflammatory disease outcomes. This volume is a must-read for researchers and advanced students in immunology and virology.

Related Products