logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Applied Deep Learning A Casebased Approach To Understanding Deep Neural Networks Umberto Michelucci

  • SKU: BELL-7182358
Applied Deep Learning A Casebased Approach To Understanding Deep Neural Networks Umberto Michelucci
$ 31.00 $ 45.00 (-31%)

5.0

90 reviews

Applied Deep Learning A Casebased Approach To Understanding Deep Neural Networks Umberto Michelucci instant download after payment.

Publisher: Apress
File Extension: PDF
File size: 12.58 MB
Pages: 410
Author: Umberto Michelucci
ISBN: 9781484237892, 1484237897
Language: English
Year: 2018

Product desciption

Applied Deep Learning A Casebased Approach To Understanding Deep Neural Networks Umberto Michelucci by Umberto Michelucci 9781484237892, 1484237897 instant download after payment.

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You'll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function.
The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions.
Applied Deep Learningalso discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You'll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy).
What You Will Learn
Implement advanced techniques in the right way in Python and TensorFlow
Debug and optimize advanced methods (such as dropout and regularization)
Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on)
Set up a machine learning project focused on deep learning on a complex dataset
Who This Book Is For
Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.

Related Products