logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Applied Deep Learning Design And Implement Your Own Neural Networks To Solve Realworld Problems Dr Rajkumar Tekchandani

  • SKU: BELL-50457738
Applied Deep Learning Design And Implement Your Own Neural Networks To Solve Realworld Problems Dr Rajkumar Tekchandani
$ 31.00 $ 45.00 (-31%)

5.0

80 reviews

Applied Deep Learning Design And Implement Your Own Neural Networks To Solve Realworld Problems Dr Rajkumar Tekchandani instant download after payment.

Publisher: BPB Publications
File Extension: PDF
File size: 256.86 MB
Pages: 878
Author: Dr. Rajkumar Tekchandani, Dr. Neeraj Kumar
ISBN: 9789355513724, 9355513720
Language: English
Year: 2023

Product desciption

Applied Deep Learning Design And Implement Your Own Neural Networks To Solve Realworld Problems Dr Rajkumar Tekchandani by Dr. Rajkumar Tekchandani, Dr. Neeraj Kumar 9789355513724, 9355513720 instant download after payment.

A comprehensive guide to Deep Learning for Beginners KEY FEATURES ● Learn how to design your own neural network efficiently. ● Learn how to build and train Recurrent Neural Networks (RNNs). ● Understand how encoding and decoding work in Deep Neural Networks. DESCRIPTION Deep Learning has become increasingly important due to the growing need to process and make sense of vast amounts of data in various fields. If you want to gain a deeper understanding of the techniques and implementations of deep learning, then this book is for you. The book presents you with a thorough introduction to AI and Machine learning, starting from the basics and progressing to a comprehensive coverage of Deep Learning with Python. You will be introduced to the intuition of Neural Networks and how to design and train them effectively. Moving on, you will learn how to use Convolutional Neural Networks for image recognition and other visual tasks. The book then focuses on localization and object detection, which are crucial tasks in many applications, including self-driving cars and robotics. You will also learn how to use Deep Learning algorithms to identify and locate objects in images and videos. In addition, you will gain knowledge on how to create and train Recurrent Neural Networks (RNNs), as well as explore more advanced variations of RNNs. Lastly, you will learn about Generative Adversarial Networks (GAN), which are used for tasks like image generation and style transfer. WHAT YOU WILL LEARN ● Learn how to work efficiently with various Convolutional models. ● Learn how to utilize the You Only Look Once (YOLO) framework for object detection and localization. ● Understand how to use Recurrent Neural Networks for Sequence Learning. ● Learn how to solve the vanishing gradient problem with LSTM. ● Distinguish between fake and real images using various Generative Adversarial Networks. WHO THIS BOOK IS FOR This book is intended for both current and aspiring Data Science and AI professionals, as well as students of engineering, computer applications, and masters programs interested in Deep learning. TABLE OF CONTENTS 1. Basics of Artificial Intelligence and Machine Learning 2. Introduction to Deep Learning with Python 3. Intuition of Neural Networks 4. Convolutional Neural Networks 5. Localization and Object Detection 6. Sequence Modeling in Neural Networks and Recurrent Neural Networks (RNN) 7. Gated Recurrent Unit, Long Short-Term Memory, and Siamese Networks 8. Generative Adversarial Networks

Related Products