Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
5.0
108 reviewsThe text s broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space; real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.
It is appropriate for courses in control theory and includes homework exercises and a solutions manual that is available from the authors upon request.
Audience: This book is intended for both beginning and advanced graduate students in a one-quarter or one-semester course on backstepping techniques for boundary control of PDEs. It is also accessible to engineers with no prior training in PDEs.
Contents: List of Figures; List of Tables; Preface; Introduction; Lyapunov Stability; Exact Solutions to PDEs; Parabolic PDEs: Reaction-Advection-Diffusion and Other Equations; Observer Design; Complex-Valued PDEs: Schrodinger and Ginzburg Landau Equations; Hyperbolic PDEs: Wave Equations; Beam Equations; First-Order Hyperbolic PDEs and Delay Equations; Kuramoto Sivashinsky, Korteweg de Vries, and Other Exotic Equations; Navier Stokes Equations; Motion Planning for PDEs; Adaptive Control for PDEs; Towards Nonlinear PDEs; Appendix: Bessel Functions; Bibliography; Index