Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.
Please read the tutorial at this link: https://ebookbell.com/faq
We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.
For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.
EbookBell Team
0.0
0 reviewsThis book presents a comprehensive introduction to design sensitivity analysis theory as applied to electromagnetic systems. It treats the subject in a unified manner, providing numerical methods and design examples. The specific focus is on continuum design sensitivity analysis, which offers significant advantages over discrete design sensitivity methods. Continuum design sensitivity formulas are derived from the material derivative in continuum mechanics and the variational form of the governing equation. Continuum sensitivity analysis is applied to Maxwell equations of electrostatic, magnetostatic and eddy-current systems, and then the sensitivity formulas for each system are derived in a closed form; an integration along the design interface.
The book also introduces the recent breakthrough of the topology optimization method, which is accomplished by coupling the level set method and continuum design sensitivity. This topology optimization method enhances the possibility of the global minimum with minimised computational time, and in addition the evolving shapes during the iterative design process are easily captured in the level set equation. Moreover, since the optimization algorithm is transformed into a well-known transient analysis algorithm for differential equations, its numerical implementation becomes very simple and convenient.
Despite the complex derivation processes and mathematical expressions, the obtained sensitivity formulas are very straightforward for numerical implementation. This book provides detailed explanation of the background theory and the derivation process, which will help readers understand the design method and will set the foundation for advanced research in the future.