logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Discretetime Inverse Optimal Control For Nonlinear Systems Edgar N Sanchez

  • SKU: BELL-4318666
Discretetime Inverse Optimal Control For Nonlinear Systems Edgar N Sanchez
$ 31.00 $ 45.00 (-31%)

4.3

38 reviews

Discretetime Inverse Optimal Control For Nonlinear Systems Edgar N Sanchez instant download after payment.

Publisher: CRC Press
File Extension: PDF
File size: 4.65 MB
Author: Edgar N. Sanchez, Fernando Ornelas-Tellez
ISBN: 9781466580879, 1466580879
Language: English
Year: 2013

Product desciption

Discretetime Inverse Optimal Control For Nonlinear Systems Edgar N Sanchez by Edgar N. Sanchez, Fernando Ornelas-tellez 9781466580879, 1466580879 instant download after payment.

Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller.
Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems: The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances.
Learn from Simulations and an In-Depth Case Study: The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels.
The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.

Related Products