logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Nonlinear Potential Theory On Metric Spaces Anders Bjorn Jana Bjorn

  • SKU: BELL-2458364
Nonlinear Potential Theory On Metric Spaces Anders Bjorn Jana Bjorn
$ 31.00 $ 45.00 (-31%)

4.0

86 reviews

Nonlinear Potential Theory On Metric Spaces Anders Bjorn Jana Bjorn instant download after payment.

Publisher: European Mathematical Society
File Extension: PDF
File size: 3.34 MB
Pages: 415
Author: Anders Bjorn, Jana Bjorn
ISBN: 9783037190999, 303719099X
Language: English
Year: 2012

Product desciption

Nonlinear Potential Theory On Metric Spaces Anders Bjorn Jana Bjorn by Anders Bjorn, Jana Bjorn 9783037190999, 303719099X instant download after payment.

The p-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories.
This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for an interested reader and as a reference text for an active researcher. The presentation is rather self-contained, but the reader is assumed to know measure theory and functional analysis.
The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space.
Each chapter contains historical notes with relevant references and an extensive index is provided at the end of the book.

Related Products