logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Practical Time Series Analysis Master Time Series Data Processing Visualization And Modeling Using Python Avishek Pal

  • SKU: BELL-6826680
Practical Time Series Analysis Master Time Series Data Processing Visualization And Modeling Using Python Avishek Pal
$ 31.00 $ 45.00 (-31%)

0.0

0 reviews

Practical Time Series Analysis Master Time Series Data Processing Visualization And Modeling Using Python Avishek Pal instant download after payment.

Publisher: Packt Publishing
File Extension: PDF
File size: 11.8 MB
Pages: 244
Author: Avishek Pal, PKS Prakash
ISBN: 9781788290227, 9781788294195, 1788290224, 178829419X
Language: English
Year: 2017

Product desciption

Practical Time Series Analysis Master Time Series Data Processing Visualization And Modeling Using Python Avishek Pal by Avishek Pal, Pks Prakash 9781788290227, 9781788294195, 1788290224, 178829419X instant download after payment.

Time Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. This book describes special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. Also, the book is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python.
The book starts with descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality and autocorrelation. Next, the statistical methods of dealing with autocorrelation and non-stationary time series are described. This is followed by exponential smoothing to produce meaningful insights from noisy time series data. At this point, we shift focus towards predictive analysis and introduce autoregressive models such as ARMA and ARIMA for time series forecasting. Later, powerful deep learning methods are presented, to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python.
The book concludes with the Appendix, with a brief discussion of programming and solving data science problems using Python.
What You Will Learn
• Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project
• Develop an understanding of loading, exploring, and visualizing time-series data
• Explore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time series
• Take advantage of exponential smoothing to tackle noise in time series data
• Learn how to use auto-regressive models to make predictions using time-series data
• Build predictive models on time series using techniques based on auto-regressive moving averages
• Discover recent advancements in deep learning to build accurate forecasting models for time series
• Gain familiarity with the basics of Python as a powerful yet simple to write programming language

Related Products