logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Smoothed Finite Element Methods Liu Gr Et Al

  • SKU: BELL-2045514
Smoothed Finite Element Methods Liu Gr Et Al
$ 31.00 $ 45.00 (-31%)

4.7

66 reviews

Smoothed Finite Element Methods Liu Gr Et Al instant download after payment.

Publisher: CRC
File Extension: PDF
File size: 15.69 MB
Pages: 694
Author: Liu G.R., et al.
ISBN: 9781439820278, 1439820279
Language: English
Year: 2010

Product desciption

Smoothed Finite Element Methods Liu Gr Et Al by Liu G.r., Et Al. 9781439820278, 1439820279 instant download after payment.

Generating a quality finite element mesh is difficult and often very time-consuming. Mesh-free methods operations can also be complicated and quite costly in terms of computational effort and resources. Developed by the authors and their colleagues, the smoothed finite element method (S-FEM) only requires a triangular/tetrahedral mesh to achieve more accurate results, a generally higher convergence rate in energy without increasing computational cost, and easier auto-meshing of the problem domain. Drawing on the authors’ extensive research results, Smoothed Finite Element Methods presents the theoretical framework and development of various S-FEM models. After introducing background material, basic equations, and an abstracted version of the FEM, the book discusses the overall modeling procedure, fundamental theories, error assessment matters, and necessary building blocks to construct useful S-FEM models. It then focuses on several specific S-FEM models, including cell-based (CS-FEM), node-based (NS-FEM), edge-based (ES-FEM), face-based (FS-FEM), and a combination of FEM and NS-FEM (αFEM). These models are then applied to a wide range of physical problems in solid mechanics, fracture mechanics, viscoelastoplasticity, plates, piezoelectric structures, heat transfer, and structural acoustics. Requiring no previous knowledge of FEM, this book shows how computational methods and numerical techniques like the S-FEM help in the design and analysis of advanced engineering systems in rapid and cost-effective ways since the modeling and simulation can be performed automatically in a virtual environment without physically building the system. Readers can easily apply the methods presented in the text to their own engineering problems for reliable and certified solutions.

Related Products