logo

EbookBell.com

Most ebook files are in PDF format, so you can easily read them using various software such as Foxit Reader or directly on the Google Chrome browser.
Some ebook files are released by publishers in other formats such as .awz, .mobi, .epub, .fb2, etc. You may need to install specific software to read these formats on mobile/PC, such as Calibre.

Please read the tutorial at this link:  https://ebookbell.com/faq 


We offer FREE conversion to the popular formats you request; however, this may take some time. Therefore, right after payment, please email us, and we will try to provide the service as quickly as possible.


For some exceptional file formats or broken links (if any), please refrain from opening any disputes. Instead, email us first, and we will try to assist within a maximum of 6 hours.

EbookBell Team

Time Series For Data Science Wayne A Woodward Bivin Philip Sadler

  • SKU: BELL-43858776
Time Series For Data Science Wayne A Woodward Bivin Philip Sadler
$ 31.00 $ 45.00 (-31%)

5.0

98 reviews

Time Series For Data Science Wayne A Woodward Bivin Philip Sadler instant download after payment.

Publisher: CRC Press
File Extension: PDF
File size: 48.73 MB
Pages: 529
Author: Wayne A. Woodward, Bivin Philip Sadler, Stephen Robertson
ISBN: 9781003089070, 1003089070
Language: English
Year: 2022

Product desciption

Time Series For Data Science Wayne A Woodward Bivin Philip Sadler by Wayne A. Woodward, Bivin Philip Sadler, Stephen Robertson 9781003089070, 1003089070 instant download after payment.

Data Science students and practitioners want to find a forecast that "works" and don't want to be constrained to a single forecasting strategy, Practical Time Series Analysis for Data Science discusses techniques of ensemble modelling for combining information from several strategies. Covering time series regression models, exponential smoothing, Holt-Winters forecasting, and Neural Networks. It places a particular emphasis on classical ARMA and ARIMA models that is often lacking from other textbooks on the subject. Practical Time Series Analysis for Data Science is an accessible guide that doesn't require a background in calculus to be engaging but does not shy away from deeper explanations of the techniques discussed. Features: Provides a thorough coverage and comparison of a wide array of time series models and methods: Exponential Smoothing, Holt Winters, ARMA and ARIMA, deep learning models including RNNs, LSTMs, GRUs, and ensemble models composed of combinations of these models. Introduces the factor table representation of ARMA and ARIMA models. This representation is not available in any other book at this level and is extremely useful in both practice and pedagogy. Uses real world examples that can be readily found via web links from sources such as the US Bureau of Statistics, Department of Transportation and the World Bank. There is an accompanying R package that is easy to use and requires little or no previous R experience. The package implements the wide variety of models and methods presented in the book and has tremendous pedagogical use.

Related Products